Our attempt to prepare the mononuclear species WCl₃-(PMe₂Ph)₃ from the dinuclear edge-sharing compound W₂Cl₆- $(PMe_2Ph)_4$ in the presence of excess phosphine ligand was unsuccessful. Recently, it was reported¹⁵ that the opposite reaction does not proceed either. We find this result puzzling and are reexamining it.

We carried out the ³¹P NMR experiment for 1 to determine whether we could observe an equilibrium between the edge-sharing and face-sharing dinuclear complexes as reported⁷ by Chisholm et al. for the PEt₃ ligand. We have not yet been able to observe such an equilibrium, but the work is continuing. The ${}^{31}P{}^{1}H$ NMR spectrum of 3 is similar to that of the face-sharing compound⁷ $W_2Cl_6(PEt_3)_3$ (6) in equilibrium with the corresponding edge-sharing compound, and the ${}^{2}J_{P-P}$ values are 44.7 and 44.0 Hz for 3 and 6, respectively.

The crystal structures of these complexes allow us to make some interesting comparisons with those of related molybdenum and tungsten compounds, as shown in Table XI. The W-W bond lengths in compounds 2 and 4b are the shortest in any neutral halogen-bridged dinuclear W(III) complexes so far reported. Another striking feature in the bromo-bridged complexes 4a and 4b is that the average W-Br_b-W angles are only 56.28 (for 4a) and 55.32° (for 4b). In general, the M-X_b distances are shorter than the $M-X_t$ distances in the edge-sharing compounds while the opposite is true in the face-sharing compounds.

Acknowledgment. We thank Professor M. H. Chisholm for providing unpublished information and Dr. Lee M. Daniels for very helpful discussion and aid with graphics. We also thank the Robert A. Welch Foundation for financial support.

Registry No. 1, 139376-26-4; 2, 139376-27-5; 3, 139376-28-6; 4a, 139376-29-7; 5, 139376-30-0; W, 7440-33-7.

Supplementary Material Available: Full tables of hydrogen atom parameters, bond distances, bond angles, and anisotropic displacement parameters for 1, 2, 4a, and 4b and a least-squares planes for 1 (26 pages); tables of observed and calculated structure factors for 1, 2, 4a, and 4b (81 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Reactions of Ph₂PN₂(SiMe₃)₃ with Organochalcogen Halides: Preparation, X-ray Structure, and Reactions of $Ph_2PN_2(SiMe_3)_2(SPh)$ with E_2Cl_2 (E = S, Se) and PhSeCl

Tristram Chivers,* Santhanathan S. Kumaravel, Masood Parvez, and M. N. Sudheendra Rao

Received October 15, 1991

The reactions of $Ph_2PN_2(SiMe_3)_3$ with arenesulfenyl chlorides in a 1:1 or 1:3 molar ratio in methylene dichloride produces the metathetical products $Ph_2PN_2(SiMe_3)_2(SAr)$ [1a, Ar = Ph; 1b, Ar = 2,4-(NO₂)₂C₆H₃] or $Ph_2PN_2(SAr)_3$ (2d, Ar = 2,4-(NO₂)₂C₆H₃) (2d, Ar = 2,4-(NO₂)_3) (2d, Ar = 2,4-(NO₂)_3) (2d, Ar = 2,4-(NO₂)_3) (2d, $(NO_2)_2C_6H_3$, respectively. Compound 2d is thermally stable below ca. 80 °C whereas the trisubstituted derivatives $Ph_2PN_2(EPh)_3$ (E = S, Se) decompose above 0 °C to give the eight-membered rings 1,5-Ph₄P₂N₄E₂Ph₂ with the elimination of Ph₂E₂. The structure of 1a was determined by X-ray crystallography. The crystals of 1a are monoclinic, space group P_2 , with a = 9.824 (4) Å, b = 10.322 (3) Å, c = 13.425 (7) Å, $\beta = 102.75$ (4)°, V = 1327.8 Å³, and Z = 2. The three-coordinate (amino) nitrogen atom in 1a is attached to three consecutive third-row elements (Si, P, and S). The reaction of 1a with 2 molar equiv of PhSeCl or with Se₂Cl₂ produces 1,5-Ph₄P₂N₄S₂Ph₂ in 65-75% with the elimination of Ph₂Se₂ and selenium, respectively. The reactions of 1a or $Ph_2PN_2(SiMe_3)_3$ with S_2Cl_2 under a variety of conditions yield the heterocycles 1,5- $Ph_4P_2N_4S_2Cl_2$ and $Ph_4P_2N_3SCl$ as the major products.

Introduction

The readily prepared reagents $R_2PN_2(SiMe_3)_3^1$ provide a fertile source of eight-membered phosphorus-nitrogen (P-N) ring systems containing sulfur or selenium in a low oxidation state (see Scheme I).²⁻⁵ These cyclocondensation reactions with polyfunctional reagents must involve a number of steps. In an attempt to gain a better understanding of these systems, we have investigated the reactions of $R_2PN_2(SiMe_3)_3$ (R = Ph, Me) with monofunctional reagents of the type PhECl (E = S, Se). When these reactions are carried out in a 1:3 molar ratio (eq 1) the eight-membered rings 1,5-Ph₄P₂N₄E₂Ph₂ are obtained in good yields, with the elimination of Ph_2E_2 , as described in a preliminary communication.6

In this account we provide further details of these investigations, including (a) the preparation of the monosubstituted derivatives

- (a) Wilburn, J. C.; Neilson, R. H. Inorg. Chem. 1977, 16, 2519. (b) Wilburn, J. C.; Wisian-Neilson, P.; Neilson, R. H. Inorg. Chem. 1979, (1) 18, 1429.

- Chivers, T.; Dhathathreyan, K. S.; Liblong, S. W.; Parks, T. Inorg. Chem. 1988, 27, 1305.
 Chivers, T.; Edwards, M.; Parvez, M. Inorg. Chem., in press.
 Chivers, T.; Doxsee, D. D.; Fait, J. F. J. Chem. Soc., Chem. Commun. 1989, 1703.
- (5)Chivers, T.; Doxsee, D. D. Unpublished observations.
- Chivers, T.; Kumaravel, S. S.; Meetsma, A.; van de Grampel, J. C.; van der Lee, A. Inorg. Chem. 1990, 29, 4591

Scheme I. Preparation of $P_2N_4E_2$ Rings (E = S, Se) from $Ph_2PN_2(SiMe_3)_3$: (i) SCl_2^2 or $SOCl_2^3$ (ii) $RSeCl_3$ (R = Me, Et, Ph);⁴ (iii) $\frac{4}{6}$ SeCl₄ + $\frac{1}{6}$ Se₂Cl₂⁵

 $R_2PN_2(SiMe_3)_2(SAr)$ (1a, R = Ar = Ph; 1b, R = Ph, Ar = $2,4-C_6H_3(NO_2)_2$; 1c, R = Me, Ar = Ph), (b) the X-ray structure of 1a, (c) the preparation of the trisubstituted derivative $Ph_2PN_2(SAr)_3$ [Ar = 2,4-C₆H₃(NO₂)₂], (d) the formation of the eight-membered rings $1.5 \cdot R_4 P_2 N_4 E_2 Ph_2$ (R = Me, Ph, E = S; R = Ph, E = Se) by the decomposition of $R_2PN_2(EPh)_3$; (e) the preparation of 1,5-Ph₄P₂N₄S₂Ph₂ by the reaction of 1a with PhSeCl (1:2 molar ratio) or Se_2Cl_2 , and (f) the reactions of 1a or $Ph_2PN_2(SiMe_3)_3$ with S_2Cl_2 .

⁽¹⁵⁾ Hills, A.; Hughes, D. L.; Leigh, G. L.; Prieto-Alcon, R. J. Chem. Soc., Dalton Trans. 1991, 1515.

⁽¹⁶⁾ Chisholm, M. H. Private communications, 1991.

⁽¹⁷⁾ Jackson, R. B.; Strieb, W. E. Inorg. Chem. 1971, 10, 1760.

Exerimental Section

Reagents and General Procedures. All reactions and the manipulation of moisture-sensitive compounds were carried out under an atmosphere of dry N_2 by using Schlenk techniques or a Vacuum Atmospheres drybox.

The following reagents were prepared by literature procedures: $R_2PN_2(SiMe_3)_3$ (R = Ph, Me)² and PhSCl.⁷ The commercially available compounds Ph₂S₂, 2,4-(NO₂)₂C₆H₃SCl, S₂Cl₂, Ph₂Se₂, PhSeCl, and Se₂Cl₂ (all from Aldrich) were used as received. The reagents CCl₃SCl (Aldrich) and SO₂Cl₂ (Aldrich) were distilled before use. All solvents were dried and distilled before use: CH₃CN (P₄O₁₀ and CaH₂), CH₂Cl₂ (P₄O₁₀), and pentane and hexanes (CaH₂).

Instrumentation. Infrared spectra $(4000-400 \text{ cm}^{-1})$ were recorded as Nujol mulls (KBr windows) on a Nicolet 5DX FT-IR spectrophotometer. Mass spectra were measured on a Kratos MS80RFA instrument (EI/70 eV). ¹H NMR spectra were obtained on a Bruker ACE 200 spectrometer, and chemical shifts are reported relative to Me₄Si in CDCl₃. ³¹P NMR spectra were recorded on a Varian XL 200 spectrometer, and chemical shifts are reported relative to external 85% H₃PO₄.

Chemical analyses were performed by the Analytical Services Division, Department of Chemistry, The University of Calgary, and the Canadian Microanalytical Service, New Westminster, B.C.

Preparation of Ph₂**PN**₂(**SiMe**₃)₂(**SPh**) (**1a**). A solution of PhSCl (1.2 g, 8.3 mmol) in CH₂Cl₂ (20 mL) was added dropwise (90 min) to a stirred solution of Ph₂**PN**₂(**SiMe**₃)₃ (3.5 g, 8.1 mmol) in CH₂Cl₂ (30 mL) at 25 °C. After 20 h, solvent was removed under vacuum, and the residual oil was dissolved in CH₃CN (30 mL) and cooled at -20 °C for 1 day to give moisture-sensitive, colorless needles of Ph₂**PN**₂(**SiMe**₃)₂-(**SPh**) (**1a**) (2.9 g, 76%), mp 104-105 °C. Anal. Calcd for C₂₄H₃₃N₂**PSSi**₂: C, 61.50; H, 7.10; N, 5.98. Found: C, 61.52; H, 7.37; N, 5.96. IR (Nujol, cm⁻¹): 1584 m, 1478 m, 1437 s, 1292 vs, 1257 s, 1243 s, 1115 s, 1106 m, 923 s, 900 vs, 861 vs, 861 vs, 749 s, 735 s, 721 m, 695 s, 552 s, 526 s. ¹H NMR (CDCl₃): δ 7.17-7.83 [m, P(C₆H₅)₂, 10 H], 6.59-6.95 (m, SC₆H₅, 5 H), 0.49 [s, >NSi(CH₃)₃, 9 H], -0.11 [=NSi(CH₃)₃, 9 H]. ³¹P NMR (CH₂Cl₂): δ +15.8. **Preparation of Ph**₂**PN**₂(**SiMe**₃)₂[SC₆H₃(NO₂)₂-2.4] (**1b**). A solution

Preparation of Pb₂**PN**₂(**SiMe**₃) $_{2}$ (**Sc**₆**H**₃(**NO**₂) $_{2}$ -**2**,**4**] (**1b**). A solution of 2,4-(NO₂)₂C₆H₃SCl (0.55 g, 2.35 mmol) in CH₃CN (20 mL) was added dropwise (1 h) to a stirred solution of Ph₂**PN**₂(**SiMe**₃)₃ (1.0 g, 2.32 mmol) in CH₃CN (20 mL) at 25 °C. After 4 h, solvent was removed from the dark red solution under vacuum, and the oily residue was extracted with pentane (30 mL) and cooled to -20 °C for 2 days to give moisture-sensitive, dark red crystals of Ph₂**PN**₂(**SiMe**₃)₂[SC₆H₃-(NO₂)₂-2,4] (**1b**) (0.52 g, 40%), mp 126-128 °C. Anal. Calcd for C₂₄H₃₁**PN**₄**SS**₁₂O₄: C, 51.58; H, 5.60; N, 10.03. Found: C, 50.42; H, 5.21; N, 10.35. IR (Nujol, cm⁻¹): 1594 m, 1576 s, 1498 s, 1440 s, 1346 m, 1329 vs, 1296 s, 1254 s, 1147 m, 1139 m, 1118 s, 1095 s, 1071 vs, 1052 s, 1029 m, 952 m, 857 m, 845 m, 736 m, 720 m, 529 m. ¹H NMR (CDCl₃): δ 8.13-9.10 [SC₆H₃(NO₂)₂, 3 H], 7.40-7.95 [P(C₆H₅)₂, 10 H], 0.17 [NSi(CH₃)₃, 18 H]. ³¹P NMR (CH₂Cl₂): δ +24.4.

The CH₃CN extract of the pentane-insoluble residue was cooled to 0 °C to give $[2,4-(NO_2)_2C_6H_3S]_2$ (100 mg) as a yellow powder. Anal. Calcd for $C_{12}H_6N_4O_8S_2$: C, 36.18; H, 1.52; N, 14.07. Found: C, 36.20; H, 1.42; N, 14.02.

Preparation of Me₂PN₂(SiMe₃)₂(SPh) (1c). A solution of PhSCl (1.05 g, 7.3 mmol) in CH₂Cl₂ (5 mL) was added dropwise to Me₂PN₂-(SiMe₃)₃ (2.20 g, 7.1 mmol) in CH₂Cl₂ (20 mL) with stirring at 0 °C. Afer 16 h the solvent was removed under vacuum and the residue was distilled to give Me₂PN₂(SiMe₃)₂(SPh) (1c) as a very pale green oil (0.75 g, 2.2 mmol), bp 105-106 °C (0.25 Torr). Anal. Calcd for C₁₄H₂₉N₂PSSi₂: C, 48.80; H, 8.48; N, 8.13. Found: C, 48.92; H, 8.52; N, 7.73. IR (liquid, cm⁻¹) 3075 m, 3061 m, 2950 s, 2896 m, 1583 m, 1478 m, 1439 m, 1419 m, 1408 m, 1384 m, 1316 s, 1283 s, 1247 s, 1024 m, 954 s, 927 s, 915 s, 896 m, 872 s, 855 s, 838 s, 761 s, 737 s, 691 m, 678 m, 634 m, 634 m, 401 m. ¹H NMR (CDCl₃): δ 7.55-7.05 (m, C₆H₅, 5 H), 1.53 [d, CH₃, 3 H, ²J(¹H-³¹P) = 13 Hz], 1.34 [d, CH₃, 3 H, ²J(¹H-³¹P) = 13 Hz], 0.37 [s, Si(CH₃)₃, 9 H], 0.05 [s, Si(CH₃)₃, 9 H], ³¹P NMR (CH₂Cl₂): δ +27.7.

Preparation of Ph₂PN₂[SC₆H₃(NO₂)-2,4]₃ (2d). A solution of Ph₂PN₂(SiMe₃)₃ (1.0 g, 2.31 mmol) in CH₃CN (20 mL) was added dropwise (90 min) to a stirred solution of 2,4-(NO₂)₂C₆H₃SCl (1.63 g, 6.95 mmol) in CH₃CN (30 mL) at 25 °C. After 16 h, an orange-yellow precipitate (1.26 g, 67%) was separated from the red solution by filtration and recrystallized from CH₃CN-CH₂Cl₂ (3:2) at -20 °C to give orange-red plates of Ph₂PN₂[SC₆H₃(NO₂)₂-2,4]₃ (2d). Caution! A small sample decomposed explosively at ca. 200 °C during a melting point determination. Anal. Calcd for C₃₀H₁₉PN₈S₃O₁₂: C, 44.44; H, 2.37; N, 13.82. Found: C, 43.35; H, 2.20; N, 13.48. IR (Nujol, cm⁻¹): 1595 s, 1519 s, 1365 m, 1340 vs, 1300 m, 1117 s, 1087 m, 1077 m, 1052 m,

831 m, 734 m, 725 m. ¹H NMR (CDCl₃): δ 7.45–9.22 (m). ³¹P NMR (CH₂Cl₂): δ +39.5.

A small amount (50 mg) of $[2,4-(NO_2)_2C_6H_3S]_2$ was obtained upon keeping the CH₃CN filtrate at 0 °C for 7 days.

Attempted Synthesis of $Ph_2PN_2(SCCl_3)_3$. A solution of Ph_2PN_2 -(SiMe₃)₃ (2.70 g, 6.25 mmol) in CH₂Cl₂ (45 mL) was added slowly (2.5 h) to a stirred solution of Cl₃CSCl (3.50 g, 18.8 mmol) in CH₂Cl₂ (30 mL) at -5 °C. After 20 h at 25 °C, solvent was removed under vacuum to give a viscous, yellow oil. A CCl₄ extract of this residue gave a single ³¹P NMR resonance at +39.8 ppm, but it was not possible to obtain an analytically pure sample of this product.

Preparation of 1,5-Ph₄P₂N₄(SPh)₂ (3a). Benzenesulfenyl chloride (1.80 g, 12.6 mmol) was added dropwise to a stirred solution of Ph₂PN₂(SiMe₃)₃ (1.80 g, 4.20 mmol) in CH₂Cl₂ (50 mL) at 0 °C. After 16 h, the removal of solvent under vacuum followed by extraction of the solid residue with pentane gave Ph₂S₂ (0.55 g, 2.50 mmol). Recrystallization of the residue from CH₂Cl₂ afforded colorless crystals of 1,5-Ph₄P₂N₄(SPh)₂ (3a) (0.81 g, 1.26 mmol, 60%), mp 238-240 °C. Anal. Calcd for C₃₆H₃₀N₄P₂S₂: C, 67.07; H, 4.69; N, 8.69. Found: C, 66.73; H, 4.71; N, 8.63. IR (Nujol, cm⁻¹): 1437 s, 1116 m, 1110 s, 1097 s, 1077 m, 1067 m, 1035 s, 1019 s, 993 m, 749 m, 739 m, 719 m, 694 m, 556 m, 534 m, 516 m, 478 m, 455 m, 430 m. ³¹P{¹H} NMR (CH₂Cl₂): δ +29.3.

When this reaction was carried out in the absence of a solvent the yield of 1.5-Ph₄P₂N₄(SPh)₂ was 80%.

Preparation of 1,5-Me₄ $P_2N_4(SPh)_2$ (3c). Liquid Me₂PN₂(SiMe₃)₃ (2.01 g, 6.50 mmol) was added dropwise by syringe to a solution of PhSCl (2.84 g, 19.7 mmol) in CH₂Cl₂ (30 mL) at 23 °C. After 30 min, the solvent was removed under vacuum, and the residue was extracted with hexanes to give Ph₂S₂ (1.42 g, 6.50 mmol). Recrystallization of the residue from CH₂Cl₂ gave colorless crystals of 1,5-Me₄P₂N₄(SPh)₂ (3c) (0.32 g, 0.81 mmol), mp 218-220 °C. Anal. Calcd for C₁₆H₂₂N₄P₂S₂: C, 48.47; H, 5.59; N, 14.13. Found: C, 48.16; H, 5.61; N, 14.12. IR (Nujol, cm⁻¹): 1444 s, 1412 m, 1303 m, 1294 s, 1287 s, 1102 s, 1090 s, 1061 s, 1018 s, 1000 s, 979 s, 943 s, 925 s, 873 s, 854 m, 751 s, 739 m, 711 m, 692 s, 653 s, 616 m, 500 s, 490 m, 442 s, 432 s, 400 m. ¹H NMR (CDCl₃): δ 7.9-7.8 and 7.55-7.35 (m, C₆H₅, 10 H), 1.75 [d, CH₃, 12 H, ²J(¹H-³¹P) = 13.0 Hz]. ³¹P NMR (CH₂Cl₂): δ +46.6.

(CDCl₃): δ 1.9–1.8 and 1.35–1.35 (III, C₄T₃, 10 T), 1.15 [u, CT₃, 12 H, ²J(¹H–³¹P) = 13.0 Hz]. ³¹P NMR (CH₂Cl₂): δ +46.6. **Preparation of 1,5-Ph₄P₂N₄(SePh)₂ (3b)**. The reaction of Ph₂PN₂-(SiMe₃)₃ with PhSeCl in a 1:3 molar ratio in CH₂Cl₂ at 0 °C produced 1,5-Ph₄P₂N₄(SePh)₂ (**3b**) (60%), which was identified by comparison of IR and NMR spectra with those of an authentic sample [δ (³¹P) NMR (in CH₂Cl₂): δ +33.2; cf. literature value of δ +33.6⁴]. Ph₂Se₂ was isolated in 54% yield by extraction of the crude product with hexanes.

Reaction of Ph₂PN₂(SiMe₃)₂(SPh) with 2PhSec1. A solution of PhSeCl (0.56 g, 2.92 mmol) in CH₂Cl₂ (15 mL) was added dropwise (30 min) to a stirred solution of Ph₂PN₂(SiMe₃)₂(SPh) (1a) (0.67 g, 1.43 mmol) in CH₂Cl₂ (15 mL) at 25 °C. After 60 h, solvent was removed under vacuum, and the yellow residue was extracted with hexane to give Ph₂Se₂ (0.30 g, 0.96 mmol). The hexane-insoluble solid was washed with CH₃CN (3 × 5 mL) to give 1,5-Ph₄P₂N₄(SPh)₂ (3a) (0.30 g, 65%) identified by comparison of IR and ³¹P NMR spectra with those of an authentic sample. An additional 60 mg of 1,5-Ph₄P₂N₄(SPh)₂ was obtained from the CH₃CN solution after 5 days at 0 °C.

Reaction of Ph₂PN₂(SiM₉₁)₂(SPh) with Se₂Cl₂. A solution of Se₂Cl₂ (0.50 g, 2.18 mmol) in CH₂Cl₂ (50 mL) was added very slowly (3.5 h) to a stirred solution of Ph₂PN₂(SiMe₃)₂(SPh) (1.0 g, 2.14 mmol) in CH₂Cl₂ (50 mL) at 25 °C. After 20 h, the precipitate of red selenium (0.325 g, 94%) was removed by filtration. Solvent was removed from the filtrate under vacuum and the yellow, semisolid residue was washed with CH₃CN (20 mL) to give 1,5-Ph₄P₂N₄(SPh)₂ (3a) (0.45 g, 65%) as an insoluble white solid.

Reaction of Ph₂PN₂(SiMe₃)₂(SPh) with S₂Cl₂. (i) A solution of S₂Cl₂ (0.44 g, 3.26 mmol) in CH₂Cl₂ (70 mL) was added very slowly (5 h) to a stirred solution of Ph₂PN₂(SiMe₃)₂(SPh) (1.0 g, 2.14 mmol) in CH₂Cl₂ (50 mL) at 25 °C. After 16 h solvent was removed under vacuum and the residue was extracted with CH₃CN (25 mL). The pale yellow residue was shown to be slightly impure 1,5-Ph₄P₂N₄S₂Cl₂ (0.20 g) by comparison of the IR spectrum with that reported in the literature.⁸ The CH₃CN filtrate was reduced in volume to ca. 15 mL and cooled to -20 °C for 2 days to give highly moisture-sensitive, colorless crystals of 1,5-Ph₄P₂N₄S₂Cl₂ (0.10 g), mp 155-156 °C dec (cf. lit. mp 156-158 °C dec⁶). Anal. Calcd for C₂₄H₂₀Cl₂N₄P₂S₂: C, 51.34; H, 3.60; N, 9.98. Found: C, 50.74; H, 3.61; N, 9.85. ³¹P NMR (CH₂Cl₂): δ +2.2.

The CH₃CN filtrate was further reduced in volume to ca. 5 mL and then cooled to -20 °C for 3 days to give a mixture of Ph₄P₂N₃SCl (80 mg) as very pale yellow, rectangular crystals and an unidentified phos-

⁽⁸⁾ Burford, N.; Chivers, T.; Rao, M. N. S.; Richardson, J. F. Inorg. Chem. 1984, 23, 1946.

Table I. Crystallographic Data for Ph₂PN₂(SiMe₃)₂(SPh) (1a)

formula fw	C ₂₄ H ₃₃ N ₂ PSSi ₂ 468.75	Z T. K	2 165
space group	P 2 ₁	λ, Α	0.710 69
а, А Ь Å	9.824 (4) 10 322 (3)	$\rho_{\text{caled}}, \text{g cm}^{-3}$	0.243
c, Å	13.425 (7)	R^{a}	0.0972
β, deg V, Å ³	102.75 (4) 1327.8	R _w ^b	0.1054

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|. \quad {}^{b}R_{w} = [\sum w\Delta^{2} / \sum wF_{o}^{2}]^{1/2}.$

phorus-containing compound (40 mg) $[\delta^{(31}P) + 14.0 \text{ in CH}_2Cl_2]$, which were separated manually. The former product was identified by comparison of IR and NMR data with the literature values [δ (³¹P) +7.8; lit. value $+7.6^{9}$].

Reaction between Ph2PN2(SiMe3)3 with S2Cl2. A solution of S2Cl2 (1.58 g, 11.7 mmol) in CH₂Cl₂ (40 mL) was added dropwise (1 h) to a stirred solution of $Ph_2PN_2(SiMe_3)_3$ (2.53 g, 5.86 mmol) at -78 °C. After 8 h the solution was allowed to reach 25 °C and then filtered to remove a sticky yellow precipitate, which was mostly sulfur. The filtrate was reduced in volume to ca. 20 mL and cooled to -20 °C for 4 days to give white crystals of 1,5-Ph₄P₂N₄S₂Cl₂ (0.25 g) (IR spectrum).⁸ Solvent was removed from the filtrate under vacuum and the residue was extracted with CH₃CN (25 mL). When the CH₃CN extract was cooled to -20 °C, white crystals of $Ph_4P_2N_3SCI (0.25 \text{ g}) (IR \text{ spectrum})^9$ were obtained. The CH₃CN-insoluble solid (0.30 g) had $\delta(^{31}P)$ +14.0 ppm in CH₂Cl₂; mp 125-130 °C dec (to give a purple melt). In CH₂Cl₂ solution at 25 °C this product decomposes to give 1,5-Ph₄P₂N₄S₂Cl₂ [δ (³¹P) +2.3], 1,5-Ph₄P₂N₄S₂ [δ (³¹P) +114.1; cf. lit. value δ +113.8²], and Ph₄P₂N₃SCl $[\delta(^{31}P) + 7.8; cf. lit. value \delta + 7.6^{9}].$

X-ray Analysis. Crystals of Ph2PN2(SiMe3)2(SPh) (1a) were obtained by recrystallization from acetonitrile. Accurate cell dimensions and a crystal orientation matrix were determined on an Enraf-Nonius CAD-4 diffractometer by a least-squares refinement of the setting angles of 25 reflections with θ in the range 10–15°. Intensity data were collected by the $\omega/2\theta$ scan method using variable scan speed (1.54–6.67° min⁻¹), scan width of $(1.00 + 0.35 \tan \theta)^{\circ}$, and monochromatized Mo K α radiation in the range $2 < \theta < 25^\circ$ with h = 0 to 11, k = 0 to 12, and l = -15 to 15. Three reflections were monitored every 2 h of exposure time and showed insignificant variations. The intensities of 2699 reflections were measured, of which 2136 had $I > 3\sigma(I)$, where $\sigma^2 I = S + 2B + [0.04(S + 1)]$ (-B)]², with S = scan count, and B = time-averaged background count extended 25% on each side. Data were corrected for Lorentz-polarization; an absorption correction was considered unnecessary. Crystal data are given in Table I.

The structure was solved by direction methods. Refinement of the structure was by full-matrix least-squares calculations, initially with isotropic and finally with anisotropic temperature factors for the nonhydrogen atoms. At an intermediate stage in the refinement, a difference map revealed most of the H atoms, which were included in the subsequent cycles at geometrically idealized positions (C-H = 0.95 Å) and fixed overall isotropic temperature factors; phenyl rings were refined as regular hexagons. Refinement converged with R = 0.097 and $R_w =$ 0.105. The final values of the refined positional parameters are given in Table II. In the refinement cycles, weights were derived from the counting statistics. Scattering factors were those of Cromer and Mann¹⁰ and Stewart, Davidson, and Simpson¹¹ and allowance was made for anomalous dispersion.¹² A difference map calculated at the conclusion of the refinement showed maxima in the vicinity of the Me₃Si group bonded to N(2) which reflected gross disorder in this part of the molecule. The computer program used in this study was SHELX76¹³ and Figure 1 was plotted using ORTEPH.14

Results and Discussion

Synthesis of Monosubstituted Derivatives $R_2PN_2(SiMe_3)_2(SAr)$. The monosubstituted products $Ph_2PN_2(SiMe_3)_2(SAr)$ [1a, Ar = Ph; 1b, Ar = $2,4-(NO_2)_2C_6H_3$] are readily obtained in good yields from the reaction of $Ph_2PN_2(SiMe_3)_3$ with ArSCl in a 1:1 molar ratio in methylene dichloride at 0 °C. Compounds 1a and 1b are

- Cromer, D. T.; Mann, J. B. Acta Crystallogr. 1968, A24, 321.
 Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys. 1965, 42. 3175
- (12) Cromer, D. T.; Liberman, D. J. Chem. Phys. 1970, 53, 1891.

Table II. Atomc Coordinates (×10⁴) for Ph₂PN₂(SiMe₃)₂(SPh) with Esd's in Parentheses

atom	x	у	Z				
Р	1958 (3)	27854	2473 (2)				
S	3709 (3)	2146 (4)	1079 (2)				
Si(1)	4833 (3)	4015 (5)	2817 (2)				
Si(2)	1467 (3)	3560 (4)	4545 (2)				
N(1)	3481 (9)	3027 (10)	2088 (7)				
N(2)	2011 (9)	3605 (12)	3419 (6)				
C(1)	1830 (5)	1044 (7)	2631 (5)				
C(2)	3034 (5)	308 (7)	2972 (5)				
C(3)	2928 (5)	-1009 (7)	3174 (5)				
C(4)	1618 (5)	-1592 (7)	3034 (5)				
C(5)	414 (5)	-856 (7)	2693 (5)				
C(6)	520 (5)	461 (7)	2492 (5)				
C(7)	532 (7)	3221 (7)	1411 (5)				
C(8)	120 (7)	2454 (7)	541 (5)				
C(9)	-981 (7)	2850 (7)	-245 (5)				
C(10)	-1671 (7)	4013 (7)	-160 (5)				
C(11)	-1259 (7)	4780 (7)	710 (5)				
C(12)	-158 (7)	4348 (7)	1496 (5)				
C(13)	3523 (9)	3235 (8)	47 (6)				
C(14)	3967 (9)	2780 (8)	-807 (6)				
C(15)	3907 (9)	3587 (8)	-1649 (6)				
C(16)	3401 (9)	4849 (8)	-1673 (6)				
C(17)	2957 (9)	5303 (8)	-783 (6)				
C(18)	3018 (9)	4496 (8)	59 (6)				
C(19)	5495 (11)	3288 (16)	4091 (10)				
C(20)	4195 (15)	5711 (16)	2920 (13)				
C(21)	6242 (12)	4041 (20)	2067 (10)				
C(22)	-477 (12)	3601 (18)	4296 (11)				
C(23)	2080 (19)	2073 (22)	5307 (12)				
C(24)	2210 (20)	4995 (22)	5317 (12)				

^a Fixed y coordinate to define the origin.

Figure 1. ORTEP plot for Ph₂PN₂(SiMe₃)₂(SPh) (1a).

moisture-sensitive, colorless and orange-red crystalline solids, respectively. Two singlets are observed at +0.49 and -0.11 ppm for the Me₃Si groups of **1a** in the ¹H NMR spectrum indicating that substitution of the SAr group has occurred at the amino rather than the imino nitrogen atom. For comparison the related compound PhCN₂(SiMe₃)₂(SPh) exhibits a singlet at 0.25 ppm in the ¹H NMR spectrum at 25 °C, suggesting that both Me₃Si groups are attached to the same (amino) nitrogen atom or that a rapid 1,3-shift of the SPh group occurs at this temperature.¹⁵ The derivative $Me_2PN_2(SiMe_3)_2(SPh)$ (1c) was obtained in a similar

⁽⁹⁾ Chivers, T.; Rao, M. N. S. Inorg. Chem. 1984, 23, 3605

Sheldrick, G. M. SHELX76. A program system for crystal structure determination. University of Cambridge, Cambridge, England, 1976.
 Johnson, C. K. ORTEF II. Report ORNL-5138; Oak Ridge National

Laboratory: Oak Ridge, TN, 1976.

Chandrasekhar, V.; Chivers, T.; Kumaravel, S. S.; Parvez, M.; Rao, M. (15)N. S. Inorg. Chem. 1991, 30, 4125.

Table III. Selected Bond Lengths (Å) and Bond Angles (deg) for $Ph_2PN_2(SiMe_3)_2(SPh)$

N(1)-P 1	.706 (9)	C(19)-Si(1)	1.849 (13)
N(2)-P 1	.518 (10)	C(20)-Si(1)	1.875 (17)
C(1)-P 1	.818 (7)	C(21)-Si(1)	1.884 (12)
C(7)-P 1	.821 (7)	N(2)-Si(2)	1.711 (9)
N(1)-S 1	.687 (9)	C(22) - Si(2)	1.865 (12)
C(13)-S 1	.762 (8)	C(23) - Si(2)	1.869 (17)
N(1)-Si(1) = 1	.786 (9)	C(24) - Si(2)	1.861 (18)
N(2)-P-N(1)	107.5 (5)	C(23)-Si(2)-C(22	2) 108.1 (8)
C(1) - P - N(1)	105.6 (4)	C(24)-Si(2)-N(2)	108.8 (7)
C(1) - P - N(2)	116.3 (5)	C(24)-Si(2)-C(22	() 110.0 (8)
C(7) - P - N(1)	107.6 (4)	C(24)-Si(2)-C(23) 108.0 (9)
C(7) - P - N(2)	113.3 (4)	S-N(1)-P	116.4 (5)
C(7) - P - C(1)	106.0 (3)	Si(1)-N(1)-P	120.9 (5)
C(13)-S-N(1)	106.1 (4)	Si(1)-N(1)-S	122.3 (5)
C(19)-Si(1)-N(1)	110.1 (6)	Si(2)-N(2)-P	139.9 (7)
C(20)-Si(1)-N(1)	110.7 (6)	C(2)-C(1)-P	120.1 (2)
C(20)-Si(1)-C(19)) 111.5 (7)	C(6) - C(1) - P	119.7 (2)
C(21)-Si(1)-N(1)	105.1 (6)	C(8)-C(7)-P	123.1 (2)
C(21)-Si(1)-C(19)) 110.5 (6)	C(12)-C(7)-P	116.9 (2)
C(21)-Si(1)-C(20)) 108.8 (8)	C(14)-C(13)-S	115.8 (2)
C(22)-Si(2)-N(2)	110.4 (5)	C(18)-C(13)-S	124.2 (2)
C(23)-Si(2)-N(2)	112.3 (7)		

manner as a pale green, moisture-sensitive oil, which exhibited two resonances for the methyl groups attached to phosphorus (vide infra) as well as signals for the inequivalent Me₃Si group in the ¹H NMR spectrum.

$$R_{2}P \xrightarrow{\text{NSiMe}_{3}} + \text{ArSCI} \xrightarrow{\text{R}_{2}P} R_{2}P \xrightarrow{\text{NSiMe}_{3}} + Me_{3}SiCl (1)$$

$$N(SiMe_{3})_{2} + Me_{3}SiCl (1)$$

$$N \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$N \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{2}P \xrightarrow{\text{NSiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{2}P \xrightarrow{\text{NSiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{2}P \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{2}P \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{3}P \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{4}P \xrightarrow{\text{NSiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{4}P \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{4}P \xrightarrow{\text{SiMe}_{3}} + Me_{3}SiCl (1)$$

$$R_{4}P \xrightarrow{\text{NSiMe}_{3}} + Me_{4}SiCl (1)$$

$$R_{4}P \xrightarrow{\text{NSiMe}_{3}} + Me_{4}SiCl (1)$$

X-ray Structure of Ph₂PN₂(SiMe₃)₂(SPh) (1a). An ORTEP drawing of **1a** with the atomic numbering scheme is displayed in Figure 1. Selected bond lengths and bond angles are given in Table III. The X-ray structural determination confirms the conclusion, based on ¹H NMR data, that the SPh group is attached to the amino nitrogen atom N(1). The most interesting feature of the structure is the geometry about N(1), which has the unique characteristic of being connected to three consecutive third-row elements, Si, P, and \tilde{S} . These substituents adopt an essentially planar geometry around N(1) ($\sum N(1) = 359.6^{\circ}$). The N(2)-P-N(1)-S and N(2)-P-N(1)-S(1) units are also almost planar, with torsion angles of 176.6 and 3.9°, respectively. The S-N(1) distance is 1.687 (9) Å [cf. ca. 1.71 Å for S-N single bonds between two-coordinate sulfur and sp² (planar) N].¹⁶ The Si-(1)-N(1) distance of 1.786 (9) Å is close to the values of 1.765 (2) and 1.774 (2) Å found for the corresponding distances involving the planar amino nitrogen atom in PhC(NSiMe₃)[N(SiMe₃)₂]¹ and is substantially longer, as expected, than the Si(2)-N(2)distance of 1.711 (9) Å involving the imino nitrogen atom. The P-N bond lengths of 1.706 (9) Å [P-N(1)] and 1.518 (10) Å [P-N(2)] are indicative of single and double bonds, respectively.¹⁸

The bond angle at the two-coordinate nitrogen, N(2), is 139.9 (7)°, and the torsion angle N(1)-P-N(2)-Si(2) is -145.54°. Assuming a similar geometry for 1c, this probably accounts for the inequivalence of the methyl groups attached to phosphorus in 1c. The N(2)-P-N(1) angle is close to tetrahedral (107.5 (5)°), but the angles N(2)-P-C(1) and N(1)-P-C(7), 116.3 (5) and 107.6 (4)°, differ significantly probably due to the steric interactions between Me₃Si and Ph groups associated with the P-N(2) unit.

Preparation and Decomposition of the Trisubstituted Derivatives $R_2PN_2(EAr)_3$. The reaction of $R_2PN_2(SiMe_3)_3$ with 3 molar equiv Scheme II. Reactions of (i) $Ph_2PN_2(SiMe_3)_2(SPh)$ and E_2Cl_2 (E = S, Se) and (ii) $Ph_2PN_2(SiMe_3)_3$ and S_2Cl_2

of PhECl in CH₂Cl₂ at 0 °C produces the eight-membered rings 1,5-R₄P₂N₄E₂Ph₂ (**3a**-c), in ca. 60% yields, presumably by the decomposition of the trisubstituted derivatives R₂PN₂(EPh)₃ (**2a**-c) (eq 2). In the absence of a solvent the yield of **3a** was increased to 80%. No other phosphorus-containing product was formed in significant amounts (³¹P NMR spectrum of the reaction mixture).

The formation of **3a** in CH_2Cl_2 was monitored by ³¹P NMR spectroscopy and an intermediate, presumably **2a**, was observed at +33.0 ppm, but this intermediate was thermally unstable above 0 °C and could not be isolated. The structure of **3a** was determined by X-ray crystallography to consist of an eight-membered ring in a chair conformation, and structural details have been given in the preliminary communication.⁶

$$R_{2}P \xrightarrow{\text{NSiMe}_{3}} \frac{3\text{ArSCl}}{\text{N(SiMe}_{3})_{2}} \xrightarrow{\text{Ar}_{2}\text{Cl}} R_{2}P \xrightarrow{\text{NEAr}} \frac{-\text{Ar}_{2}E_{2}}{\text{N(EAr)}_{2}} \xrightarrow{1,5-R_{4}P_{2}N_{4}E_{2}Ar_{2}} (2)$$

$$2a, R = Ar = Ph, E = S \\ 2b, R = Ar = Ph, E = S \\ 2b, R = Ar = Ph, E = S \\ 2c, R = Me, Ar = Ph, E = S \\ 2d, R = Ph, Ar = 2A-(NO_{2})_{2}C_{6}H_{3}, E = S \\ 3c, R = Me, Ar = Ph, E = S \\ 3c, R = Me,$$

In contrast to the thermal instability of $Ph_2PN_2(SPh)_3$ (2a) [δ (³¹P) +33.0] at room temperature, the trisubstituted derivative 2d is obtained in excellent yields as air stable, orange crystals from the reaction of $Ph_2PN_2(SiMe_3)_3$ with 3 molar equiv of 2,4- $(NO_2)_2C_6H_3SCl$ in CH_2Cl_2 at 23 °C. The compound Ph_2PN_2 - $(SCCl_3)_3$ was also obtained in a similar manner as a viscous, yellow oil, which is thermally stable at room temperature (³¹P NMR spectrum), but an analytically pure sample could not be obtained. The derivative 2d exhibits good thermal stability. It can be recovered unchanged after heating for 3 h at reflux in acetonitrile. After 72 h, 2d was recovered in ca. 50% yield, and a small amount of the disulfide (2,4-(NO_2)_2C_6H_3S)_2 was isolated.

The mechanism of the formation of the eight-membered rings 3a-c from 2a-c (eq 2) is of interest. The trisubstituted derivatives PhCN₂(EPh)₃ (E = S, Se) have been shown by ESR spectroscopy to decompose with the formation of the intensely colored resonance-stabilized radicals PhCN₂(EPh)₂[•] to give the diazenes *trans*-PhEN(Ph)CN=NC(Ph)NEPh,¹⁵ which are isomers of the hypothetical eight-membered rings, 1,5-Ph₂C₂N₄E₂Ph₂ (cf. 3a and 3b). However, there is no evidence for the formation of the corresponding phosphorus-containing radicals Ph₂PN₂(EPh)₂[•] from the decomposition of 2a and 2b; i.e., no intense colors or ESR signals are observed during the formation of 3a and 3b.

We note here that the related compound $(PhS)_3N$ readily undergoes homolytic cleavage of the N-S(Ph) bond to give the radical $(PhS)_2N^{*,19}$ and the selenium analogue $(PhSe)_3N$ also

⁽¹⁶⁾ Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.

⁽¹⁷⁾ Ergezinger, C.; Weller, F.; Dehnicke, K. Z. Naturforsch. 1988, 43b, 1119.

⁽¹⁸⁾ Trinquier, G. J. Am. Chem. Soc. 1986, 108, 568.

Scheme III

decomposes under mild conditions to give Ph_2Se_2 quantitatively.²⁰ The formation of **3a** and **3b** from **2a** and **2b**, respectively, must involve the facile fission of N-E(Ph) bonds. Consequently we have prepared the mixed chalcogen derivative $Ph_2PN_2(SePh)_2$ -(SPh) in order to determine which chalcogen-nitrogen bonds are cleaved preferentially. As indicated in eq 3, this decomposition produces 1,5-Ph_4P_2N_4S_2Ph_2 (**3a**) and Ph_2Se_2 (in isolated yields of 78 and 65%, respectively). Thus it appears that Se-N bonds are cleaved preferentially in this process.

$$\frac{Ph_2P}{N \underset{SPh}{\overset{\text{NSiMe}_3}{\longrightarrow}}} + 2 PhSeCl \longrightarrow Ph_2P \underset{N \underset{SPh}{\overset{\text{NSePh}}{\longrightarrow}}}{\overset{\text{NSePh}}{\longrightarrow}} \frac{1}{2 3a} + Ph_2Se_2$$
(3)

Reactions of Ph₂**PN**₂(**SiMe**₃)₂(**SPh**) (2a) with E₂Cl₂ (E = S, **Se**). In view of the isoelectronic relationship between Ph₂P and PhC groups as substituents in an S-N ring, the 7- π -electron molecules Ph₂PN₂E₂ (4a, E = S; 4b, E = Se), isoelectronic with the well-characterized radicals PhCN₂E₂ (E = S,²¹ $E = Se^{22}$), are reasonable target molecules.

With this goal in mind we attempted to generate the PN_2E_2 ring systems by the reaction of 1a with E_2Cl_2 in CH_2Cl_2 at 25 °C (see Scheme II). In the case of Se_2Cl_2 , however, this reaction produced the eight-membered ring 3a (65%) and elemental selenium (ca. 100%), presumably from the decomposition of Ph_2

- (20) Back, T. G.; Kerr, R. G. J. Chem. Soc., Chem. Commun. 1987, 134.
 (21) Vegas, A.; Perez-Salazar, A.; Banister, A. J.; Hey, R. G. J. Chem. Soc., Dalton Trans. 1980, 1812.
- (22) Belluz, P. D. B.; Cordes, A. W.; Kristof, E. M.; Kristof, P. V.; Liblong, S. W.; Oakley, R. T. J. Am. Chem. Soc. 1989, 111, 9276.

PNSeSeN(SPh). As indicated in Scheme II, the reaction of 1a with S_2Cl_2 was more complicated and the eight-membered ring 1.5-Ph₄P₂N₄S₂Cl₂ (5)⁸ and the six-membered ring Ph₄P₂N₃SCl (6)⁹ were isolated as the major products together with a small amount of an unknown PNS heterocycle, 7, with δ (³¹P) = +14.1. Moreover, the reaction of Ph₂PN₂(SiMe₃)₃ with 2 molar equiv of S₂Cl₂ also produced 5, 6, and a larger amount of 7 (cf. Scheme II). In attempts to obtain a pure sample, it was shown by ³¹P NMR spectroscopy that 7 decomposes in solution to give 5, 6, and 1,5-Ph₄P₂N₄S₂. In view of the identity of the decomposition products, it is possible that this thermally unstable product is the five-membered ring Ph₂PN₂S₂Cl.

The S,S'-dichloro derivative 5 was previously prepared by the oxidative-addition of Cl_2 (as SO_2Cl_2) to 1,5-Ph₄P₂N₄S₂,⁸ but the properties of this highly moisture-sensitive compound were not investigated. In this work, the transformations represented in Scheme III were shown to take place by ³¹P NMR spectroscopy.

Conclusions

The thermal stability of the trithiolato derivatives $Ph_2PN_2(SAr)_3$ is dependent on the nature of Ar. When Ar = 2,4-(NO₂)₂C₆H₃, this derivative is thermally stable whereas the compounds $Ph_2PN_2(EPh)_3$ (E = S, Se) undergo spontaneous decomposition below room temperature to give the eight-membered rings 1,5- $Ph_4P_2N_4E_2Ph_2$. In contrast to the thermal decomposition of the related trisubstituted benzamidines, $PhCN_2(EAr)_3$,¹⁵ this conversion does not involve a radical mechanism. The benzenethiolato group in the monosubstituted derivative $Ph_2PN_2(SiMe_3)_2(SPh)$ is attached to the amino rather than the imino nitrogen atom. Attempts to generate the unknown five-membered ring systems $Ph_2PN_2E_2$ (E = S, Se) by reactions of this derivative with E_2Cl_2 gave rise to known six- and eight-membered PNS rings containing S-Cl bonds as the final products.

Acknowledgment. We thank the NSERC (Canada) for financial support. M.N.S.R. is grateful to IIT Madras (Madras, India) for a sabbatical leave.

Registry No. 1a, 139426-73-6; **1b**, 139426-74-7; **1c**, 139426-75-8; **2a**, 130010-89-8; **2d**, 139426-76-9; **3a**, 130010-86-5; **3b**, 130010-87-6; **3c**, 130010-88-7; **5**, 90133-21-4; **6**, 84247-67-6; $Ph_2PN_2(SiMe_3)_3$, 61500-31-0; $Me_2PN_2(SiMe_3)_3$, 21385-93-3; 2,4- $(NO_2)_2C_6H_3SCl$, 528-76-7; [2,4- $(NO_2)_6C_6H_3S]_2$, 2217-55-2; $Ph_2PN_2(SCCl_3)_3$, 139426-77-0; Cl_3C -SCl, 594-42-3; PhSeCl, 5707-04-0; benzenesulfenyl chloride, 931-59-9.

Supplementary Material Available: Listings of crystallographic data, anisotropic thermal parameters for non-hydrogen atoms, positional parameters for hydrogen atoms, and torsion angles (6 pages); a table of observed and calculated structure factors for 1a (13 pages). Ordering information is given on any current masthead page.

⁽¹⁹⁾ Barton, D. H. R.; Blair, I. A.; Magnus, P. D.; Norris, R. K. J. Chem. Soc., Perkin Trans. 1 1973, 1031.